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SINGLE-LOOK DETECTION WITH UNKNOWN SIGNAL STRENGTHS

INTRODUCTION

Detection problems involving unknown parameters can lead to large error probabilities. An
example problem illustrating this has two signals of unknown strength added to Gaussian noise. Let
hypothesis H, (n = 0,1,2) designate that exactly » signals are present. Mathematically, the problem
with equal a priori probabilities is stated as:

P(H,) = P(H) = P(H,) =1/3
Hyri=m
ry= n,
Hirn=5+n
ry = M,
of
n=m

J‘"2=S2+ﬂ2

)
2]

3P =35 +n
l’2=52+!12,

where 7, and r;, are received signals, n, and n, are noises, and s, and s; are signals of unknown
strengths. After receiving one sample each of r; and ry, the decision problem is to determine how
many signals are present.

The classical method estimates the signal strengths from the received voltages under each
hypothesis, places these signal strengths back into the corresponding pdf (probability density function),
and chooses the number of signals present that gives the minimumn error probability. This method
gives a 2/3 error probabality for any combination of signal strengths. The poor performance is due to
having only a single observation and equal a priori probabilities.

A detector based on knowing the signal values provides an upper limit on performance and is the
standard to which other methods are compared. The comparison of detector performance is based on
the total probability of error. The spread between the classical and the known signal performance
suggests that there should be some decision procedures having error probabilities lying between them.
The "known signal" rule can he applied, even when the actual signal strengihs are unknown, where a
‘guess’ is made for the strengths. This rule and the one assuming that the signals are uniformly
distributed between two limits are applied to this problem. Neyman-Pearson type tiests are also
developed and applied to this problem. The Neyman-Pearson tests are generalized and applied to
correlated noise.

PROBABILITY DENSITY FUNCTIONS

Gaussian noises #; and #, of zero mean and equal variance are added to the signals s, and s,.
For most of the work, n; and n, are independent. With the received signals normalized to the

Manuscript approved September 9, 1986,



CHESTER E. FCOX, JR.

noisestandard deviation, the pdfs for Hy, Hy, and H, are given below. H, is the hypotheses that
exactly » signals are present. All parameters of the noise are assumed to be known. The Gaussian
noise density is
_ n;z + n-_,2
pﬁ‘(”h ﬂz) = ,‘lﬂ e 2 5

£

and the probability densities for the received signals under each hypothesis are
PAn, ri,ry) = plry, ry)
2 2
ry -+ 4
i
==

I ’

pﬂﬁl(rl,rz) =Plsy 2 0, 5=0) p; lry— 51, 79) + Plsy =0, 537 0) p.lriry — 59)

1 1
= ‘é‘ﬁ;(ﬁ — s, + > pilry, ey — 5)

(r—syd? + rd P+l — sq9?
e 2 % 1 =7

p 'S
7]

.

p €
L

]
£ |
ra |

and
Prg,rird) = pplri — si,r2 — 59
_ ‘J’]_—Sl)l + (rz - Sz)z
= —— 2
2w
The nrohability densifty function of jpintly Gaussian correlated noise of eocual variances and correlation
1 profabdility aonsity unct 10N 01 JOoImily Lraussian COrrglalicd noisc O egual vanandces and correlanon

coefficient p is given by
(n‘z—2p nyng+ n%)

1 - 2
( , Yoo — 2{1—p9
Paimn 2 (1—pHt?

The probability density of the received signals under each hypothesis is modified accordingly.

MINIMUM PROBABILITY OF ERROR

The decision of whether Hj, H,, or H, has occurred is made afier looking at the received signals
ry and 7, and using the known a prioti probabilities. The minimum probability of error occurs when
the probability of being correct is a maximum. The decision rule is

max P(H,} abserve 7} — chaose H,

H
ot equivalently,

m{gx P(H) Prin, {r,r;) — choose H,.

If PUH)) poyy (ri,ry) is compared with P(Iiff)pﬁﬁj (ri,ry), then the hypothesis having the smallest value

can never be the one giving the maximum value {at least, it would be rejected in favor of the
hypothesis having the larger value in this test). Thus, the result of conducting the maximization opera-
tion is equivalent to choosing the hypothesis that satisfies a set of binary tests (expressed in the nega-
tive of each hypothesis) {1, pp. 48-50]. For the case of three hypotheses, this sei of iesis is:

Hgand H: P(Hg)pﬁHD(?) < P{H) pﬂgl(_r‘) — not Hy, else not A,
Hg and Hy: P(H@)pﬂHo(_r') < P(H)) Pﬂﬂg(?) — not Hy, else not H,, and
H, and Hy P(HDPpyy () < PCH)) By, (F) = not Hy, else not H,.

2
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The hypothesis minimizing the error probability is that which holds true for each of these tests. These
iests are applied by the following logic:

If test {H, and H,} is true, then
If test {H, and H,) is true, then
choose hypothesis H,
else
choose hypothesis H,
endif
else
If test {Hy and H,) is true, then
choose hypothesis A,
clse
choose hypothesis Hj,.
endif

The classical method estimates the unknown parameters in each of the pdfs and then applies the
minimum probability of error test. We shall use the maximum a posteriori (MAP) estimate

max pGFlH,;5) — 5 for H,, n = 0,1,2.
5

For each hypothests H,, the unknown parameters are estimated. In this case, the unknown parameters
are the signal levels 5; and 5,, and the relevant pdfs are

1.2 L o
AT Ty

eﬁ k4

1
Hy: P(fl,r2,H0)= —_
27

—1/2f(r—s}? + 2 —1/21r2 Fo—s)2
Hy pGryrlH) = 2= Le7Y [ermsn?+ 2]+_1_8 V2 + s ,
2w 2
and

- —1/2j¢r— ié+( - ).
sz p(rl,rlez) = 2—;.—3 l"'l 1] L) 522]‘

The estimates for s, and s, that maximize these pdfs are:
Hgy . (no parameters needed) ,
Hy: sy=r] and 5, = 1y,

and
Hz'. 5= F]. and 5, = r;;,

where r; and r, are the received values of r, and ra, tespectively. The minimum probability of error
decision rule is to choose the hypothesis

g L1 —u2ez+ 30
¢ 3 2 '
- 2 ‘ .2
o 11 e Y261 | -1/200)
Y3 2g 2 ’
and

1 1
Hy: — —
13 2n

with the largest value. By inspection, £, always has a larger probability density function, hence H, is
always chosen as the final decision. Since H; occurs only one out of three opporiunities, the error
probability is 2/3.
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KNOWN-SIGNAL DETECTOR

To place an upper bound on the performance that any method could yield, the minimum probabil-
ity of ercor detector was designed where the signal strengths were used in the design. The performance
for any other procedure never exceeds the performance obtained when there is perfect knowledge of
the signal strengths; i.e., the values of 5, and s, are known.

For equally likely a priori probabilities, P{(Hg) = P(H)) = P(Hy = 1/3.

. - 1/2 -
By letting R, = "Vt %Y 4pd R, = 22 V252 1o tests may then be expressed as

R, + R,
Hyand Hy: 1< — — not Hy, else not H,,
HQ, and Hj_ : 1< R1R1 = not Hg, else not Hz, and

R+ R
Hyand Hy - ke L R\R, — not 4, else not .

Note that R, and R, are the likelihood ratios of (Hy and Hy) and (#y and H,), respectively. These
tests can be shown graphically on a R; and R, plot where each (R;, R;) pair lies in a decision region
(iabeled for Hy, H,, or H,). The boundaries between the decision regions are obtained by repiacmg the
inequalities by equalities. All decision boundaries are shown in Fig. 1 where parts {a), (b), and ()
show the boundary of each test individually, and (d) shows all boundaries. Note that the Hy, H; boun-
dary is never used. Figure 2 shows all regions and boundaries needed to make a decision.

Table 1 shows the total error probability for known signals lying between —16 dB and +16 dB.
Figure 3 shows a piot taken along the main diagonal. The small signal asymptote is the error probabil-
ity that is obtained when nothing is known about the signal; for equally likely a priori probabilities, the
small signal asymptote error probability is 2/3. The error probability drops to .02 when the signal is 16
4B and approaches zero for large signals.

MINIMAX CRITERION

The decision rules cansidered contain parameters that are at our disposal. To select design param-
eters a‘ a minimax iest is conducted. The minimax design selects the design parameters d vy perform-
ing

min max O Gpe»d)-
del} ?acmmsA

The selected design is that d which yields this minimax value for Q where (0 is a performance mea-
SUTE, Tomar 1S the actual signal value, A is the set of allowed signal vectors, d is the design paramelers
at our disposal, and D is the set of allowed design vectors.

For this work, the performance O is the difference beiween the probability
ject design and the probability of error using the true signal. For this performance measure, Q is iden-
tified by the more descriptive notation AP {e).

, design based on} _ p [ ... design based on]
assumed signals) — © 1= 1 actual signals )

~u

—~
m
S’

= P 1@';?0*
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§> (dB)

-16

-16 -14 -12 -10
0.6367 0.6305 0.6222 0.6162
0.6300 Q6297 06213 0.6103
0.6220  0.6167 0.6195 0.6078
0.6150  0.6088 0.6045 06043
0.6037 0.5993 0.5942  0.5880
0.5935  0.5852 0.5820 0.9773
0.5753  0.5712 0.5708 0.5617
0.5353  0.5557 0.5510 0.5423
0.5327  0.5277 0.5240 0.5213
0.5048  0.5045 0.5030 0.5028
0.4708  0.4693 0.4690  0.4658
0.4378 04360 04372 0.4382
0.3987 0.3985 0.3978  0.3967
03703 0.3700 0.3707 0.3688
0.3498  0.3502 0.3505  0.3490
03393 0.3393  0.3397  0.3368
03343 03343 0.3347  0.3320

0.6017
0.6070
0.5970
0.5948
0.5822
0.5752
0.5517
0.5350
0.5195
0.4915
0.4572
0.4302
0.3945
0.3630
0.3448
0.3350
0.3310

Table 1 — P(e) for “‘known signal’”

Sy (dB)

-6 -4 2 0 2 4 6 8 10 12 14 16
0.5933  0.5753 0.5573 0.5290 0.5012 0.4658 04302 0.3993 03700 0.3498 0.3387 0.3347
0.5897 0.5747 05572  0.5283  0.5017 0.4673 04305 03998 0.3712  0.3500  0.3338  0.3350
0.5862 0.5720 0.5510 0.5253 0.4975 04665 0.4285 04000 0.3688 (0.3498 0.3385 0.3347
0.5782  0.5658 0.5442 0.5268 0.4907 04663 0.4268 0.3980 0.3687 (0.3508 0.3392 0,3360
0.5688 0.5555 0.5358 0.5208 0.4927 0.4633 04250 0.3982 0.3658 0.3485 0.3378 0.3347
0.5633  0.5457 0.5328 0.5102 04790 0.4510. 04202 03892 0.3582 0.3398 0.3313 0.3267
0.5477 0.3363 0.5167 0.4910 0.4663 04380 04067 03742 0.3478 0.3252 0.3168 0.3128
0.5282  0.5190 0.4930 0.4728 0.4488 04212 03930 03567 03292 0.3087 0.2988 0.2958
05100 0.4962 04745 04532 04293  0.3983 03675 03313 03055 0.2835 0.2720 0.2693
0.4858 04712 04532 04280 04017 03738 03343 02988 (.2675 Q.2465 0.2365 02338
0.4570  0.4425 04257  0.3993 03718 0.3383  0.2975 02600 02272 02053 0.1933  0.1903
04283 04185 03973 0.3665 0.3345 0.3000 0.2547 0.2160 0.1787 0.1575 0.1462 0.1423
0.3895 0.3778 03647 0.3335 0.3012 €.2668 0.2180 0.1752 0.1380 0.1147 01015 00973
03605 03507 0.3340  0.3050 0.2745 0.2325 0.1853 0.1395 0.0992 0.0743 0.0588 0.0540
03417 0.3310 0.3128 0.2820 02507 0.2083 0.1572 0.1128 0.0718 0.0455 0.0300¢ 0.0252
0.3323  0.3238 0.3018 0.2708 0.2393  0.1970 0.i443  0.0990 0.0577 0.0302 0.0150 0.0100
0.3283 03200 0.2982 0.2665 0.2345  0.1923  0.1397  0.0932 0.0518 0.2835 0.0083 0.0030

L106 LHOddY TAN
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Fig. 3 — Error grobability for "known-signal”
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ASSUMED KNOWN-SIGNAL DECISION RULE

Ly JHY IR T J UV Sy A4 U %

Perfect know euge of 5 and 37 combined with the minimum pluuauuuy of error criterion leads w
the rules for the "known -signal" detector. By assuming values for s, and s,, we obtain the "assumed
known-signal” decision tules. The signal parameters in R, and R, are the design parameters at our
disposal. To help pick these values, two criterions are used: minimax and min-average. The min-
average lead to the same general results as the minimax and are not reported here.

The problem is solved by considering the following statements: (1) the best design requires
$20 = 8145 (2) the location of the actual signals yielding the worst performance is at either s; = s, or
S2max ANG 51 miq (OF 51 min 304 $3 mae; and (3) the best design occurs at the intersection of the fimiting

fioe of + Fomniling ~f o W i
vafues of two families of curves associated with either 5, = 5) 0T 5, and 5, We consider each state-

ment independently and then together.

Table 2 contains the worst {maximum)} AP{e) for the design signals 5., and &, raaging from
—16 dB to +16 dB (cach entry is the "max" part of "minimax"). Thus, each entry in Table 2 is the
result of maximizing 81 APle) values for a table total of 6561 = 81 x 81 calculations. This iable
shows the best design 1o have s,; = 5, (this is the "min" part of “minimax“}. This table places the
best design near s;; = 5,4 = 3 dB. Consequently, we have demonstrated the first statement (1), that
the best design lies along the diagonal s, = 5.

Statement {2}, which claims that the worst perfarmance occurs for signals of s, = sy or when one
signal is a maximum and the other is a minimum, is shown in Table 3. Each entry in Table 3 gives the
location of s, and s, which corresponds to the worst AP {e), where AP{e) is computed for all values of
the actual signals s; and s;. The entries in this table are of the form {m,n) where m and n = signal
value {1 = —16 dB, 2 = —12 dB,..., 9 = +16 dB) and m <> s,. For example, the design of



NRL REPORT 9017

Table 2 — Worst AP, (¢) for Each Design Pair
S (dB)

-16 -12 -8 -4 0 4 8 12 16

-16 0.4888 04793 0.4487 04058 0.3470 0.2968 0.2712 0.2843 0.4123
-12 0.4820 04802 04583 04138 0.3565 0.2888 0.2165 0.2262 0.3443
-8 0.4520 04613 04517 04152 0.3597  0.2925 0.2200 0.1865 0.3130
g 4 0.4042 04165 0.4143 03940 0.3393 0.2762 0.2052 Q.1918 0.3167
Eﬁ 0 0.3505 0.3565 0.3610 0.34d45  0.3017 0.2465 0.1820 0.1957 0.3182
“ 4 0.3085 0.2913  0.2920 0.2802 0.2448 0.1963 0.1625 0.1903 0.3110
8 0.2820 0.2242  0.2240 0.2127 0.1837 0.1565 0.1490 0.1772 0.2933
12 0.2887 0.2275 0.1855 0.1872 0.1837 0.1745 0.1672 0.1988 0.2953
16 0.403%8  0.3372 03030 03068 0.3042 02978 0.2888 0.2300 0.3958

Table 3 — Location of Worst AP, {e) Actual
Levels for “*Assumed-Known Signal’” Detector
S; {(dB)

-6 -12 -8 -4 0 4 8 12 16
-6 199 99 99 99 99 98 98 57 7.8

12 99 99 57 7.7
8 1 59 7.9
g 4 ‘ " 59 15
= 0199 99 99 59 79
“ 489 99 1,9 59 79

8189 99 99 99 %9 91 19 59 79
1276 76 96 96 96 95 91 66 76
6187 7,7 87 97 97 %6 96 o7 87

S34 = 514 = 12 dB (located near.the lower right-hand corner of Table 3) has the actual signals giving
the fargest AP{e) of (6,6} or sy = 5, = 4 dB. Two points can be made. Since the best signal design is
S24 = S14, we need consider only what happens there. Two actual signal locations occur on the main
diagonal at (max, max) or at (min, max). Both depend on the signal levels used in the computer run.
Observe that, except for the design at (8 dB, 8 dB) where the actual signals are minimax, all other
designs along the main diagonal have actual signals of near equal strength (s, = 5,). This observation
on Table 3 verifies statement 2.

Statement (3) is considered in three parts: (a) determine the maximum AP(e) over all possible
actual signals 5, = 5| for each design signal 5,4 = 5,4, (b} determine the maximum AP{e} for all actual
signals (5] qin, S2max) OF (51 gax> S2min) for all design signals sy, = s,4; and (c) determine maximum
AP(¢) from (a) and (b).

Working on part (a) first, Fig. 4 shows AP(e) vs s,, = 514 for various values of s, = 5,. Figure
4 indicates that for any signal design, AP{e) is nearly the same for all large actual signals. Further-
more, AP(e) is a maximum at large actua) signal values for small designs (left side of curve), and
AP(e) is a maximum at small actual signal designs when the design signals are large. The envelope of
the curves defined by the crosshatched area form the curve of maximum AP(e) vs signal design
534 = 814. Of course, the minimax solution is to choose the signal design associated with the minimum
of this envelope curve that occurs at s;; = s;; = 9 dB, if only part (a) is considered.
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08

| S, = §, ACTUAL SIGNALS
24 AND 32 dB

a8

AP}

S?d - S1d idB?

Fig. 4 — AP(e) vs design signal for s;= 5
actua! signals values, "assumed known-signal®
design

Part (b) of statement (3), where the "assumed known signal* detector is used with 5,4 = 5,4 and
the actual signals take their minimum and maximum values, is analyzed by computing AP(e) for
Smin — U and Sge — o°. The reference "known-signal” decision rule leads to deciding H, whenever a

large signal is present and &, otherwise. Thus, Ple | signal) = % O+1+0) = % Figure 5 is a plot

of this condition. P{e} has litife variation about a value of %

1.0
osl
-
08+
AP{e} r
0.4
! §y=0 {nat in aB}
» 8, = o0
‘ <
02 /
E——
- 5,=~16 dB }/‘
g =+16 dB
1] 1 ! 1 { i LY X
-18 -8B v] 8 1%

Spg= S4B}

Fig. § — AP(e) vs design signal for
min/max actual signal values, “assumed
knowa-signal" design

10
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Finally, part (¢} of statement (3) combines the results of the maximum error AP(e) vs signal
design found in parts (a) and (b). The combined curves from (a) and (b) are shown in Fig. 6. The
best signal design is the design where the curve of the maximum values of AP (e} is a minimum. The
best "assumed known-signal" design occurs for 53, = 5, equal to 5 dB.

T

08 L
0.6 - 5,=5,=240r32d8
- - MA . . ,
APle)  |=— _/___‘ S; = MINIMUM, Sp = MAXIMUM Fig. 6 — AP(e) vs design signal for best 5;
"""\.\ L = 5, and min/max actual signal values—
04 r—- \\ "assumed known-signal” design
N BEST / -
L h {5 d8) :
/
/
02 S
/
- /
o R | . J L 1 S
-16 —8 s} 8 15
Sy4= 1 (dB)

UNIFORMLY DISTRIBUTED SIGNAL DECISION RULE

Another approach to treating the unknown parameter problem is to assign a probability density
function to these parameters and then to compute the error performance. We first develop the test for
an arbitrary density function, then specialize to the uniform density case.

s H (7I5,H,) = pdf of the received 7, conditioned on the random
parameter 5 taking the value 5 and H, being true,

2-(5) =pdf of 5,
P, FIH) = [ pryey GIS.H)p 55

all'd
The decision rule for minimum error probability becomes (for equal P (H,,))‘.
n}{ax[pﬂ " (?fH,,)] — choose H, .

sy and s, are taken to be independent random quantities: p:(sy.s:) = p; (s)p, (s)). Assume
5, and s, are uniformly distributed between s, and s,:

Vis, —s)) , s51<s5<3s,
p;(s) = 0, elsewhere
r|2 + r22

— 1
vl (f'PS,Ho) = '2: €

(ry— )2+ rf 2ty — s
— f-FI:_'rr\__l_ 1 T 2 '.I__.__ 2
Prizu \TIS,M) = 5 5 ¢ T2 €
. (rp— 502+ (ry - s)?
= I 2
Pri5, FI5,H,) = 7

11
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The indicated integration can be performed by evaluating two types of integrals.

Sy ,1 P
; 1 71, _ 1%
N PN \1,‘22 c —c 5 = £ \ifge

5 L) Iy \imw)}
Sy {r—s)?
. 1 T2 1
I ——U'{e ds
5 2x) Sy 5

¥ _dr—5)?

_ 1 1 ;
Su—s} f (21‘,)1}2 ¢ ds

5

- [P(s —r}— Pls —r}]
5,75 l u t I
. R
X .l _T
where P(x)} = f Wc dv.
—oa mw
The conditional pdfs are then:
1 _rf-‘-r%
P, FIH) = 5—~e 7,
1 ) -2
— 7
FF]HI(’]HE) =% Q272 (5,—s5,) € [P(Sa“fl) - P(SF?‘])]
R i
el
+ ROYE (s,,-s;)e P(s,~ry) — P(s—ry}{,
and
peys FLHY = —2 — |Pls,~rp — Ps—rp||P(s,—r) — PGs—rp)].
ity (g, —s5)% 1 3 ;
Define
—
wir) = : 27; e 2 {P(su—r} - P(s,-r)} ,
T
Wy= Wi},
and
Wl = W.(."z) .

Note that W, and W, are likelihood ratios of &, and H, respectively. The pdfs become:

1 _r%i—r%
Pﬂyq(7lH0) = Z_'H'-e 2 {1] 3
rf+r§
- Wit W
pﬂH](ﬂHl) = ;l:e 2 l————*l,) 2] , and
- S = i
1 _ fl2+f%
P FIHD) = e [W1 W;,].
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The tests are expressed in terms of W) and W, by
HG Hl H2

] | |

1 | 1
max (1, 12(W+w,), W +W, — choose H,.
This is of the same form as for the known-signal case where {#,] replaces {R,]. Consequently, the
decision boundaries are already known and are shown in Fig. 7. Thus, if no unknown parameters are
present and the signal and/or noise are independent of each other, the decision boundaries can be writ-
ien as in Fig. 7 where the axes are labeled "likelihood ratio,” Fig. 7 holds for all likelihood ratios.

g
2 +i
W, = < © 2 (PSy— rif=PEB -1}
6}~ SUﬁ L
. W, = oo e 2 [P{S,— ryl — PiS_ — 2/
U S
W, 4} Fig. 7 — "Uniformly distributed signals”
decision regions

The signal location considered is a square region, centered at the origin of the signal space. It is
defined by 5; = —sy, where 5; = lower limit and s;; = upper limit of signals as shown in Fig. 8. The
performance measure AP {e) is computed, and the value and location of AP {e) 4y are given in Table
4. From Tabie 4, the best design occurs around sy = 14 dB. The maximum values of the actual
signals shown in Table 4 are plotted in Fig. 9 for each design s; near the solution, and the true
minimax soiution is s;; = i3 dB. This information is shown graphicaily to ailow interpoiation in finding
the minimax solution. Table 5 shows AP (e) vs all actual signals for the best design sy = 13 dB.

'// ////ASU /1
//{ =

Sy Su

////////// “Su////

Fig. 8 — Uniformly distributed signal region — 5,

S =-S5y
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Table 4 — Value and Location of Largest AP{¢) —
“Uniformly Distributed” Detector

-
(dg) AP (&) I Location of target
5 0.367 | Maximum/maximum
10 0.240 § Maximum/maximonm
i2 4.175 | Maximum/maximum
14 Q.165 | Maximum/minimum
16 0.173 | Maximum/interior
18 0,183 | Maximom/interior
20 0.183 | Interior/intertor
22 0.183 | Interior/ interior
10
08 -
08
% ACTUAL (S, AND |8 {—
a
< BEST DESIGN
0.4 | Su= 13 uB
}
INTERIOR
MAXIMUN
02

APle) = D14 ——me Nt

o ! ! )
-8 ¢ 8

DESIGN Sy (d8l

24

Fig. 9 — Determining best "uniformly distribuied
signals” design
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Table 3 — AP (€} for ““Uniformly Distributed Signals’* Detector
(at best: Sy = —S8; = 13dB)

-16 -14 -12 -10 -8 -6 4 -2 0 2 4 6

16

0.0292 0.0357 0.0440 0.0472 0.0603 0.0672 0.0807 0.0927 0.1117 0,1222 0.1305 0.,1383
0.0358 0.0362 0.0435 0.0530 00550 0.0705 0.0800 0.0918 0.1113 0.1207 0.1287 0.1377
0.0430 0.0483 (.0445 0.0547 0.0645 0.0732 0.0828 0.0958 0.1135 0.1227 0.1277 0.1352
9.0497 0.0552 0.0588 0.0578 0.0663 0.0802 0.0883 (.1027 01107 0.1212 0.1282 01352
0.0585 0.0622 0.0673 ©.0727 0.0768 0.0873 0.0962 0.1085 10,1128 0.1220 0.1227 0.1345
0.0655 0.0728 0.0767 0.0802 0.0810 ©.0890 0.1015 0.1060 ©.1173 0.1295 0.1298 0.1308
0.0813  0.0848 0.0848 0.0938 0.1003 0.1013 0Q.1078 Q1172 Q1322 0136y 01375 01330
0.0933 0.0927 0.0977 0.1072 0.1132 01178 0.1185 0.1328 01417 0.1443 0.1417 0.1340
0.1057 0.1107  0.1137  0.1165 0.i1163 0.1240 0.1280 0.1380 0.1457 0.1482 0.1432 0.1363

0.1188 0.1182 0€.1197 0,1180 (1299 0.1282 0.1333 01420 0.1512 0,I532 0.1380 0.1340
0.1280  0.1292 01302 0.1322 01365 0.1308  0.1372 0.1430 01473 0.1465 0.1257 0.1173

vvvvv - AL R 7 5 A a0 ALF Y L ) H.a2/lZ LEPR R a ] ALI W Moiad

0.1308  0.1310 0.1278 0.1250 0.1303 0,1263 0.1250 0.1292 0.1360 0.1293 0.1082 0.1013
0.1308  ©0.1270  (.1250 0.1230 01195 0.1177  0.1165 0.1150 01122 0.1058 0.0848 0.0805
0.1247 0.1240  0.1240 ©.1207 0.1202 0.1152 0.1108 0.1092 01032 0.0970 0.0803 0.0720
0.1308 0.1295 0.1282 0.1258 0.1243 01207 0.1135 0.1107 01112 01035 00855 0.0838
01372 0.1355 0.1343 0.1325 0.1283 0.1238 0.1148 0©.1172 01172 0.1110 0.0913 0.0925
0.1417 0.1393  0.1393 0.1368 0.1322 0.1277 0.1188 0.1210 0.1217 0.1153 0.0962 0.0963

0.1165
0.1230

0.1453
0.1417
0.1402
0.1338
0.1310
0.1268
0.1260
0.1270
G.1262

0.1160
0.1043
0.0975
0.0830
0.0925
0.1050
0.1217
0.1285

L1106 LHOdTH TUN
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SEQUENTIALLY APPLIED NEYMAN-PEARSON DECISION RULES

The lack of knowledge about the signal levels s, and s, suggest formulating a test that does not
use these signal levels. The Neyman-Pearson test comes close to meeting this condition. This test sets
the threshold when the signal is absent so that a given probability of false alarm (P;,) occurs. The
probability of missed detection is computed from knowing this threshold and the signal-io-noise ratio.

Three hypotheses, H, H|, and H, are present in this problem while the standard Meyman-
Pearson technique applies 10 a binary problem. To apply the Neyman-Pearson technique, the problem
is expressed as a series of bhinary tests and the Neyman-Pearson technique is applied to each one in
sequence. The Neyman-Pearson technique’s parameter Py, sets a threshold for a single signal. The
symmetry of the problem leads to applying the same P, for both sy and s,. Then, both r; and r; are
tested to see if either s, or s, are present by comparing r; and r; to this threshoid. If both do not cross
the threshold, then H, is declared and the test is stopped. An additional pair of tests is made when i
is not declared. The number of signals declared preseat determines which H,, is chosen.

The threshold for the test vses the noise-only hypothesis, thus pdf can be written

— _1__ —1/2n?
pin) = e

2P, = e gy

f 1
T (zﬂ,)i,fz

Figure 10 shows 73 vs Pp, for Gaussxan noise, and Fig. 11 shows the decision regions. The
combined test applied to the received signal 7 7 is then:

Sa iR aWRRIR N aRpaLtlt 8 INen:

£l < rqoand iry) < g
Then declare H,
Else:
If: lril > 7g,and 1531 > 74
Then: declare H,
_ Else: declare H,
End.

102

1p = z
5 Pe=J. — o © o

1074 -

Fig. 10 — Threshold «

P PARAMETER

1675 |

10t

1977 bl e
o1 & a &

ACTUAL SIGNALS ISZ=SI) idB)
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H, Hy H,
T
o
To
H, Hy Hy—————= 1y Fig. 11 — Neyman-Pearson decision region
My H Hy

Figure 12 is a plot of P(e) vs signal levet (s, = s,) for various P;. The error probability
approaches a limit slightly less than P,, as the signal strength increases. Since the "known signal"
detector has P, — 0 for large signals, a design using small P,, seems desirable. Figure 12 shows that
the small signal performance is poor for small P, designs and large signal performance is poor for large
P,, designs. A compromise must be made to obtain good performance at all signal levels.

=Y
[v6]

CLASSICAL RESULT

o
o
{ ’

Pled -

Fig. 12 — Error probabitities for Neyman-Pearson
case, uncorrelated noise

KNOWN SIGNAL

[=]
I

o
%)
|

QL‘ I i 1 _

Z16 -8 0
SIGNAL LEVEL {dB}
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A pariicular design value for the probability of false alarm is determined by using a minimax cri-
teria. In this case, the worst differential error AP (e} over all actual signals is pletted vs P, (Fig. 13).
The best design for P, is Py, = 0.08, because the worst AP (e} is a minimum at this point. The actual
signal levels that yield the worst AP{e) are noted on the figure. The solid line indicates the worst
AP{e} is occurring where s, = &, for these various Py,. The dotted line indicaies the worst AP{e)
occurs for s, & gy,

-
L]
o

201
R-VE o ~18dB < 8,8, <+ 16 uR
APle) BEST (S, = §,]
AD o BEST iS,, 8,)
20 A=L_p
BEST DESIGN [ANY Sy, 5;)) —
0 n ; BEST DESIGN IS, = 5))
3000t Q001 o1 0.10 1.00

Pf 13

Fig. 13 — AP (error) vs Py, —Neyman-Pearson
nncorrelated noise

The remainder of this report investigates the effect of noise correfation on the performance of
some Neyman-Pearson

CORRELATED NOISE

Decision making in correlated noise is made by generalizing the Neyman-Pearson work. The
hypothesis of no signals being present, Hy, is tested by decorrelating the jointly Gaussian noise and
applying a Neyman-Pearson Py, test to both r( and r,. Jointly Gaussian random variables can be made
independent of each other by applving the proper linear transformation. The parameter 6 in the
transformation is selected so that the transformed random variabies are independent of each other.

The pdf of the noise {for o3 = o = 1) is:
nil —2pnln2+n22
i 21 - pH

p(n;,ng) = m €

The transformation used is:

mi=ncosP+ n;5mn0

oies 0 = nnn O
!Ilz - .’11 Sl T !12 LUD Ir
.. 1 _1 120103
The noise is decorrefated by 8 = — tan™ | ———} .
2 0'22—0'12

in this case, oy = o) S0 thal 6 = %:— and sin @ = cos 8 = 1/v2 . The uncorrelated Gaussian density of

the new variables is given by

where a,il=l+pand0',i2=1—p.
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The m, and m, thresholds are obtained by causing the threshold 7, to apply to meet the design
parameter £y, with ¢ = [ and then adjusting this threshoid for o = 1:

1 . —1/2n?
—Z—Pfa = f W& dn .

Al]

For nonunity standard deviation x = n o,

1 o 1 et
}_Pﬂ' _f(mo) ) 2g ¢ dx

TI=Cm To= V1+p7y, and
Tz=0’mi‘1‘0*\ll—p’r0.
The test for Hy is

If: [Fil < 7y and {71 < 74
Then: declare H,,

Else: test for H{ or H;,

End.

where 7, and 7, are the transformed reccived signals r{ and r;.

If f, is declared true, then the test is completed; if Hy is not declared, the test for H| and H, is
conducted by using two additional tests, The first test is to determine if 5, is present conditioned on s,
being present, and the second tests for s; given 51. To conduct these tests, two methods are investi-
gated. The first test is the same as the test used for uncorrelated noise, and the second is new. The
first method ignores correlation in all tests made; its development has already been discussed. The
second method conducts tests based on conditional densities. The densities are conditioned on one sig-
nal being zero and the other being an estimate. The estimate is "most likely."

The results are obtained by using the Neyman-Pearson method developed in the previous section
for P, = 0.0001, 0.001, 0.01, 0.1, and 0.25, and for noise correlation coefficient p = 0.99, The other
two methods considered are similarly plotted. The following poirts can be made from Fig. 14.

e The performance of small signals approaches the classical result of P{e} = 2/3, which is reagon-
able since no procedure can do better for zero-strength signals.

® As the signal increases, the performance breaks away from the classical result. Consider, for
example, the signal levels encountered for Ple) = 0.6 {90% of the classical value). The signal at
P;, = 0.0001 has to be 15 dB stronger than the P, = 0.25 value. The 15 dB signal difference
decreases to 7 dB when P(e) = 0.3 due to the greater slope of the curves at small Py, values.

® Signals lying between —10 dB and +7 dB have error probabilities that are better for large P,
values.

® The large signal performance gets poorer for larger Py, values. For example, the p,, = 0.25
curve never gets below 0.165. This poor performance is due to nonzero P(e) for Hy and H),.

A small Py, design gives poor performance at moderate signals but good performance at large sig-
nals, and a large P, design gives poor performance at large signals but good performance at midievel
signals; a nominal value of p;, = 0.1 was chosen for further analysis.

Figure 15 is a ptot of Ple) vs actual signal strength (s, = s;) for P;, = 0.1 and p = 0.9, 0.99,
and 0.999. These p vaiues are both smaller and larger than the nominal p used in the curves of Fig.
i4. Figure 15 shows that there is only stight difference for all values of p, the most obvious being the
strong signal performance. Here, the performance at the smaller p values is best and is ~35% lower
than the ¢.075 error performance at p = 0.999.
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Fig. 14 — ignore correlation—e = 0.99
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Fig. 15 — Igniote correlation—P, = 0.1
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Most Likely Estimate (Correlated Noise)

Conducting a Neyman-Pearson test for the presence of a signal requires estimating unknown
parameters and integrating the pdf, with this signal not present, over a region set by Py, considerations.
The second method of accounting for correlated noise estimates the unknown signal s, in
plrilra = rs, sy = 0, 53} by maximizing the joint pdf p(ry, r5).

1
— __I____ 9_ 101 — 921”2
20(1 — p»

Wry— 502 = 2plry — s Mry— s} + (ry = s

where r; and r; equal their received values and s; = 0. By setting
dp(ry,ry)
BT

we get §, =r, — pry and

p(r,r)

P ("2)
_lr=p?r )
(21,.)1/2(11_!32)1/2 € 2031

=N (i, 0 =1-p".

For a_Gaussian random variable r;, the desired threshold 7, centered about the mean p’r;, is
7 =/ 1—p*ry where tq is the threshold for p = 0. The random variable (r; — p?r)) is a Gaussian 1an-
dom variable with zero mean and variance = 1 — p2. The rule is to declare s, absent if |r;—p2r;| < 7.
Since r; = r; when the lest is applied,

[ri|(1 — p% < 7 — 5, absent

To
lri | < W — 5, absent, else s, declared present.
—o
A similar test halds for declaring s, present or absent. The declaration of H, or H, is made as before,

LAL
s; and s, present — H,. otherwnse H,.

The error performance obtained by estimating the unknown signals by maximizing the joint den-
sity function ("most likely" method) is given in Figs. 16 and 17. Figure 16 is a plot of P(e) vs actual
signal strength (s, = s5,) for p = 0.99 and values of P,, from 0.0001 to 0.25. This set of curves shows
a plateau not found for the other estimation methods. The curve of P{e) vs 5, {=3,} decreases {rom
the classical limit of 2/3 to a level that depends on P, (signal levels from 0 to 15 dB). For very weak
signals, larger values of pg, give better small signal performance The plateau extends from signal
values of ~ —5 dB to +25 d UD, the actual limits uf‘:perlu (7] Jﬂ, For strong mgnars, the error P(c) is
smallest for the smallest F,,. The large signal error performance is determined only by PelHy) (since

P(elH)) and Ple|H,) = 0), and is given by
P& = PUHYPelHp = +[1 - (1- P,

For P;, = 0.25, this equation gives P{e) = 0.146, which agrees with the value computed. This does
not verify the accuracy of the Monte Carlo method used because the Monte Carlo method gives exact
values for Ple|H,) and P(e|H,) (= 0) that are accurate to an infinite number of places. An exact
match would not occur for smaller signals, There is no overall better design because the Pp" values

el 11lo isit 1AL

giving the lowest Ple) changes from (starting at small signals and progressing to [arger srgnals)
Pfamax i Pfamin - Pfamax - Pfamin'
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Fig. 16 — "Most likely" signal estimation, p = 0.99
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Fig. 17 — "Most likely" signal estimation, P, = 0.1
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Figure 17 plots P{e) vs actual signal {s, = sy) for Py, = 0.1 and p = 0.9, 0.99 and 0.999 for the
"most likely” signal estimation method. These curves show that the plateau length increases with
increasing p. The p = 0.9 casc almost causes all indications of this plateau to disappear. The drop in
P{e) of the small signal side of the plateau is caused by P{e|H) going from a value near one to zero,
while the drop for signais to the right of the plateau drop because the conditional error probability
P(e|H,) goes from one to zero. The remaining strong signal P(e) is determined by PlelHy). Large p
values markedly improve the small signal performance but also markedly reduce the moderate-to-large

narfarmanca Enr faron gionale iu!‘(‘rﬂ A oivac the haot narformance
pliiUiinainut. Ul dipe Siglians, 1di 5o U v wiib vuse plariidianve,

Error performance of the two methods are compared in Fig. 18, a plot of P(e} vs actual signal
(s, = 5} and for p = 0.99 and P, = 0.1. Smail signal error performance is best for the "most likely"
estimation method and continues to be best until the signals reach +5 dB. Then the "ignore
correlation” method does markedly better until the signals reach +25 dB and remains marginally better
for larger signals. All methods have signal ranges where they perform noticeably worse than the best,
thus no method is chosen "best." If forced to choose, the choice would be for the method that ignores
correlation. This is because it has fractionally less degradation where it is not the best compared to the
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In addition to investigating the results of applying these methods, the effect of the reference
"known signal" detector is further considered. Figure 19 is a plot of P(e) vs signal strength (s, = s;)
for p = 0., 0.9, 0.99, 0.999, and 0.9999. As the noise becomes more correlated (p —1) the perfor-
mance gets better, primarily for smaller signals. This is because the noise becomes less uncertain. All
curves join the lower curve, thus at larger signals the performance for all p is almost the same. At very
small signals, the performance is that of the "best” a priori performance {where the received signals are
not considered in making a decision). Between these extremes, the p-dependency can be seen. In the
limit p —1, the noise voltages are equal; thus under Hy, no errors are made if the rule "Declare H,
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Fig. 19 — Effects of correlation and known signals

present if and only if r; = r;* is used. For very small signals, no noticeable difference is present
between H, and H, so an error is made half of the time, ie., PlelH,)} + PlelH,) = 1/3. Hence,
P{e) = 1/3. The general shape of the performance curves are about the same for all p, and the curves
are shifted —10 dB for each "9" change in p (or for each 10 dB reduction in (1—pJ).

COMPARISONS

The error probability of the "best" of each decision rule considered for the uncorrelated cases are
plotied in Fig. 20. The known signal case is a lower bound (as expected). The best "assumed known
signal” design is for s,; = 5;, = § dB, the "uniformiy distributed” design is best for 5, = 13 dB, and
the Neyman-Pearson design is best for P;, = 0.08; each gives almost the minimum AP{e) within that
particular family of designs,

For small signals, the "best" {(lowest) error performance is obtained for the "assumed known sig-

nal" detector method. The uniformly distributed Neyman-Pearson are always worse than the "assumed

i
ku’\}‘#'ﬁ Sis'ﬁui case ,I.,lntll fl-hﬁ S:gnal ;U"n‘:l_‘!s are near 1ﬂ HR whnﬂ: ("“}' {'ﬂl_‘nclrjep‘cﬁ} fhPV 2” COMme near

each other. For larger signals, the lowest Ple) design becomes the N_eyman-Pearson. The “uniformly
distributed”® detector is worse than the "assumed known signal” detector except for farge signals. No
rule is uniformiy better {2, p. 796] than others, so choosing the best rule requires judging the advan-
tages and the disadvantages of each. My cheice of those shown is the "assumed known signal" because
it is close to the “known signal" detector error probability results for smali signals.

Correlated noise introduces another piece of information {correlation coefficient) into the prob-
fem. The Neyman-Pearson tests required an estimate of the {unknown) signals, not set equal to zero
as before, in the conditional pdf, The selected method is "ignore correlation.”

CONCLUSIONS

The error performance in determining the number of signais present when each signal (if present}
combines nnﬁdﬁy with Gaussian noise and with Unly a buigl\: lUUl\-pm mgum {u ﬁvnuabt‘c} is wiupmcﬁl
and evaluated numerically; the one giving the lowest error probability {or close, since none were
uniformiy best) is selected. The classical method estimates any needed unknown parameters and places

their estimates in the probability density functions. The hypothesis with the largest probability deasity
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